Matrix
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 0 Accepted Submission(s): 0
Problem Description
There is a matrix
M that has
n rows and
m columns
(1≤n≤1000,1≤m≤1000) . Then we perform
q(1≤q≤100,000) operations:
1 x y: Swap row x and row y (1≤x,y≤n) ;
2 x y: Swap column x and column y (1≤x,y≤m) ;
3 x y: Add y to all elements in row x (1≤x≤n,1≤y≤10,000) ;
4 x y: Add y to all elements in column x (1≤x≤m,1≤y≤10,000) ;
1 x y: Swap row x and row y (1≤x,y≤n) ;
2 x y: Swap column x and column y (1≤x,y≤m) ;
3 x y: Add y to all elements in row x (1≤x≤n,1≤y≤10,000) ;
4 x y: Add y to all elements in column x (1≤x≤m,1≤y≤10,000) ;
Input
There are multiple test cases. The first line of input contains an integer
T(1≤T≤20) indicating the number of test cases. For each test case:
The first line contains three integers n , m and q .
The following n lines describe the matrix M. (1≤Mi,j≤10,000) for all (1≤i≤n,1≤j≤m) .
The following q lines contains three integers a(1≤a≤4) , x and y .
The first line contains three integers n , m and q .
The following n lines describe the matrix M. (1≤Mi,j≤10,000) for all (1≤i≤n,1≤j≤m) .
The following q lines contains three integers a(1≤a≤4) , x and y .
Output
For each test case, output the matrix
M after all
q operations.
Sample Input
2 3 4 2 1 2 3 4 2 3 4 5 3 4 5 6 1 1 2 3 1 10 2 2 2 1 10 10 1 1 1 2 2 1 2
Sample Output
12 13 14 15 1 2 3 4 3 4 5 6 1 10 10 1HintRecommand to use scanf and printf
Source
BestCoder Round #81 (div.2)
/************************************************************************/
附上该题对应的中文题
Matrix
Time Limit: 3000/1500 MS (Java/Others)
Memory Limit: 131072/131072 K (Java/Others)
问题描述
有一个n行m列的矩阵(1≤n≤1000,1≤m≤1000),在这个矩阵上进行q (1≤q≤100,000) 个操作:1 x y: 交换矩阵M的第x行和第y行(1≤x,y≤n); 2 x y: 交换矩阵M的第x列和第y列(1≤x,y≤m); 3 x y: 对矩阵M的第x行的每一个数加上y(1≤x≤n,1≤y≤10,000); 4 x y: 对矩阵M的第x列的每一个数加上y(1≤x≤m,1≤y≤10,000);
输入描述
输入包含多组数据. 第一行有一个整数T(1≤T≤15), 表示测试数据的组数. 对于每组数据: 第一行输入3个整数n, m, q. 接下来的n行,每行包括m个整数,表示矩阵M。(1≤M?i,j??≤10,000),(1≤i≤n,1≤j≤m). 最后q行,每行输入三个整数a(1≤a≤4), x, y。
输出描述
对于每组数据,输出经过所有q个操作以后的矩阵M。
输入样例
2 3 4 2 1 2 3 4 2 3 4 5 3 4 5 6 1 1 2 3 1 10 2 2 2 1 10 10 1 1 1 2 2 1 2
输出样例
12 13 14 15 1 2 3 4 3 4 5 6 1 10 10 1
Hint
建议使用scanf / printf 代替 cin / cout
出题人的解题思路:
Matrix
对于交换行、交换列的操作,分别记录当前状态下每一行、每一列是原始数组的哪一行、哪一列即可。
对每一行、每一列加一个数的操作,也可以两个数组分别记录。注意当交换行、列的同时,也要交换增量数组。
输出时通过索引找到原矩阵中的值,再加上行、列的增量。
复杂度O(q+mn)
在hack的时候,其实我是有点小讶异的,毋庸置疑,这一题肯定是不能暴力求解的,但是还是有人暴力做,而且还过了初测,好吧,挺心机,但我写不出卡TLE的数据
为了做到不超时,显而易见,我们不能把每一次操作通通执行一遍,而是去记录每行每列都发生了什么操作,然后在最后一次计算一遍就可以了,而要做到这一点,我们需要数组pr[]记录后来的每一行分别对应最初的第几行,数组pc[]记录后来的每一列对应最初的第几列,而对x行或x列执行的加法操作,就是对最初的pr[x]行或pc[x]列执行加法操作
/*Sherlock and Watson and Adler*/
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<math.h>
#include<vector>
#include<map>
#include<deque>
#include<set>
#include<cmath>
#include<complex>
#include<string>
#include<algorithm>
#include<iostream>
#define exp 1e-10
#define ll long long
using namespace std;
const int N = 1005;
const int M = 10000;
const int inf = 100000000;
const int mod = 2009;
__int64 s[N][N];
struct node
{__int64 sum;
}r[N],c[N];
int pr[N],pc[N];
int main()
{int t,n,m,q,a,x,y,i,j;scanf("%d",&t);while(t--){memset(r,0,sizeof(r));memset(c,0,sizeof(c));scanf("%d%d%d",&n,&m,&q);for(i=1;i<=n;i++){pr[i]=i;for(j=1;j<=m;j++){pc[j]=j;scanf("%I64d",&s[i][j]);}}for(i=0;i<q;i++){scanf("%d%d%d",&a,&x,&y);if(a==1)swap(pr[x],pr[y]);else if(a==2)swap(pc[x],pc[y]);else if(a==3)r[pr[x]].sum += y;elsec[pc[x]].sum += y;}for(i=1;i<=n;i++)for(j=1;j<=m;j++)printf("%I64d%c",s[pr[i]][pc[j]]+r[pr[i]].sum+c[pc[j]].sum,j!=m?' ':'\n');}return 0;
}
菜鸟成长记