当前位置: 代码迷 >> 综合 >> 多示例学习(Multi Instance Learning)的概念
  详细解决方案

多示例学习(Multi Instance Learning)的概念

热度:3   发布时间:2023-12-20 11:32:20.0

多示例学习(Multi Instance Learning)的概念

            根据训练数据歧义性大小,大致可以把在该领域进行的研究划分为三种学习框架:监督学习、非监督学习和强化学习。监督学习的样本示例带有标记;非监督学习的样本示例没有标记,因而该学习模型的歧义性较大。多示例学习可以认为是与三种传统学习框架并列的第四种学习框架。由Dietterich等人于1997年提出,提出的背景是通过一项对分子活性的研究,文章是"Solving the Multiple-Instance Problem with Axis Parallel Rectangles" ,下面就对多示例问题做一个概念性的介绍。
    多示例学习可以被描述为:假设训练数据集中的每个数据是一个包(Bag),每个包都是一个示例(instance)的集合,每个包都有一个训练标记,而包中的示例是没有标记的;如果包中至少存在一个正标记的示例,则包被赋予正标记;而对于一个有负标记的包,其中所有的示例均为负标记。(这里说包中的示例没有标记,而后
  相关解决方案