当前位置: 代码迷 >> 综合 >> TensorFlow RNN深度学习 BiLSTM+CRF 实现 sequence labeling 序列标注 源码
  详细解决方案

TensorFlow RNN深度学习 BiLSTM+CRF 实现 sequence labeling 序列标注 源码

热度:80   发布时间:2024-01-10 20:01:37.0

在TensorFlow RNN 深度学习下 BiLSTM+CRF 实现 sequence labeling 

双向LSTM+CRF 序列标注问题

源码


去年底样子一直在做NLP相关task,是个关于序列标注问题。这 sequence labeling属于NLP的经典问题了,开始尝试用HMM,哦不,用CRF做baseline,by the way, 用的CRF++。

关于CRF的理论就不再啰嗦了,街货。顺便提下,CRF比HMM在理论上以及实际效果上都要好不少。但我要说的是CRF跑我这task还是不太乐观。P值0.6样子,R低的离谱,所以F1很不乐观。mentor告诉我说是特征不足,师兄说是这个task本身就比较难做,F1低算是正常了。


CRF做完baseline后,一直在着手用BiLSTM+CRF跑 sequence labeling,奈何项目繁多,没有多余的精力去按照正常的计划做出来。后来还是一点一点的,按照大牛们的步骤以及参考现有的代码,把 BiLSTM+CRF的实现拿下了。后来发现,跑出来的效果也不太理想……可能是这个task确实变态……抑或模型还要加强吧~


这里对比下CRF与LSTM的cell,先说RNN吧,RNN其实是比CNN更适合做序列问题的模型,RNN隐层当前时刻的输入有一部分是前一时刻的隐层输出,这使得他能通过循环反馈连接看到前面的信息,将一段序列的前面的context capture 过来参与此刻的计算,并且还具备非线性的拟合能力,这都是CRF无法超越的地方。而LSTM的cell很好的将RNN的梯度弥散问题优化解决了,他对门卫gate说:老兄,有的不太重要的信息,你该忘掉就忘掉吧,免得占用现在的资源。而双向LSTM就更厉害了,不仅看得到过去,还能将未来的序列考虑进来,使得上下文信息充分被利用。而CRF,他不像LSTM能够考虑长远的上下文信息,它更多地考虑整个句子的局部特征的线性加权组合(通过特征模板扫描整个句子),特别的一点,他计算的是联合概率,优化了整个序列,而不是拼接每个时刻的最优值。那么,将BILSTM与CRF一起就构成了还比较不错的组合,这目前也是学术界的流行做法~


另外针对目前的跑通结果提几个改进点:

1.+CNN,通过CNN的卷积操作去提取英文单词的字母细节。

2.+char representation,作用与上相似,提取更细粒度的细节。

3.more joint model to go.


fine,叨了不少。codes time:


完整代码以及相关预处理的数据请移步github: scofiled's github/bilstm+crf


requirements:

ubuntu14

python2.7

tensorflow 0.8

numpy

pandas0.15


BILSTM_CRF.py

import math
import helper
import numpy as np
import tensorflow as tf
from tensorflow.models.rnn import rnn, rnn_cellclass BILSTM_CRF(object):def __init__(self, num_chars, num_classes, num_steps=200, num_epochs=100, embedding_matrix=None, is_training=True, is_crf=True, weight=False):# Parameterself.max_f1 = 0self.learning_rate = 0.002self.dropout_rate = 0.5self.batch_size = 128self.num_layers = 1   self.emb_dim = 100self.hidden_dim = 100self.num_epochs = num_epochsself.num_steps = num_stepsself.num_chars = num_charsself.num_classes = num_classes# placeholder of x, y and weightself.inputs = tf.placeholder(tf.int32, [None, self.num_steps])self.targets = tf.placeholder(tf.int32, [None, self.num_steps])self.targets_weight = tf.placeholder(tf.float32, [None, self.num_steps])self.targets_transition = tf.placeholder(tf.int32, [None])# char embeddingif embedding_matrix != None:self.embedding = tf.Variable(embedding_matrix, trainable=False, name="emb", dtype=tf.float32)else:self.embedding = tf.get_variable("emb", [self.num_chars, self.emb_dim])self.inputs_emb = tf.nn.embedding_lookup(self.embedding, self.inputs)self.inputs_emb = tf.transpose(self.inputs_emb, [1, 0, 2])self.inputs_emb = tf.reshape(self.inputs_emb, [-1, self.emb_dim])self.inputs_emb = tf.split(0, self.num_steps, self.inputs_emb)# lstm celllstm_cell_fw = tf.nn.rnn_cell.BasicLSTMCell(self.hidden_dim)lstm_cell_bw = tf.nn.rnn_cell.BasicLSTMCell(self.hidden_dim)# dropoutif is_training:lstm_cell_fw = tf.nn.rnn_cell.DropoutWrapper(lstm_cell_fw, output_keep_prob=(1 - self.dropout_rate))lstm_cell_bw = tf.nn.rnn_cell.DropoutWrapper(lstm_cell_bw, output_keep_prob=(1 - self.dropout_rate))lstm_cell_fw = tf.nn.rnn_cell.MultiRNNCell([lstm_cell_fw] * self.num_layers)lstm_cell_bw = tf.nn.rnn_cell.MultiRNNCell([lstm_cell_bw] * self.num_layers)# get the length of each sampleself.length = tf.reduce_sum(tf.sign(self.inputs), reduction_indices=1)self.length = tf.cast(self.length, tf.int32)  # forward and backwardself.outputs, _, _ = rnn.bidirectional_rnn(lstm_cell_fw, lstm_cell_bw,self.inputs_emb, dtype=tf.float32,sequence_length=self.length)# softmaxself.outputs = tf.reshape(tf.concat(1, self.outputs), [-1, self.hidden_dim * 2])self.softmax_w = tf.get_variable("softmax_w", [self.hidden_dim * 2, self.num_classes])self.softmax_b = tf.get_variable("softmax_b", [self.num_classes])self.logits = tf.matmul(self.outputs, self.softmax_w) + self.softmax_bif not is_crf:passelse:self.tags_scores = tf.reshape(self.logits, [self.batch_size, self.num_steps, self.num_classes])self.transitions = tf.get_variable("transitions", [self.num_classes + 1, self.num_classes + 1])dummy_val = -1000class_pad = tf.Variable(dummy_val * np.ones((self.batch_size, self.num_steps, 1)), dtype=tf.float32)self.observations = tf.concat(2, [self.tags_scores, class_pad])begin_vec = tf.Variable(np.array([[dummy_val] * self.num_classes + [0] for _ in range(self.batch_size)]), trainable=False, dtype=tf.float32)end_vec = tf.Variable(np.array([[0] + [dummy_val] * self.num_classes for _ in range(self.batch_size)]), trainable=False, dtype=tf.float32) begin_vec = tf.reshape(begin_vec, [self.batch_size, 1, self.num_classes + 1])end_vec = tf.reshape(end_vec, [self.batch_size, 1, self.num_classes + 1])self.observations = tf.concat(1, [begin_vec, self.observations, end_vec])self.mask = tf.cast(tf.reshape(tf.sign(self.targets),[self.batch_size * self.num_steps]), tf.float32)# point scoreself.point_score = tf.gather(tf.reshape(self.tags_scores, [-1]), tf.range(0, self.batch_size * self.num_steps) * self.num_classes + tf.reshape(self.targets,[self.batch_size * self.num_steps]))self.point_score *= self.mask# transition scoreself.trans_score = tf.gather(tf.reshape(self.transitions, [-1]), self.targets_transition)# real scoreself.target_path_score = tf.reduce_sum(self.point_score) + tf.reduce_sum(self.trans_score)# all path scoreself.total_path_score, self.max_scores, self.max_scores_pre  = self.forward(self.observations, self.transitions, self.length)# lossself.loss = - (self.target_path_score - self.total_path_score)# summaryself.train_summary = tf.scalar_summary("loss", self.loss)self.val_summary = tf.scalar_summary("loss", self.loss)        self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.loss) def logsumexp(self, x, axis=None):x_max = tf.reduce_max(x, reduction_indices=axis, keep_dims=True)x_max_ = tf.reduce_max(x, reduction_indices=axis)return x_max_ + tf.log(tf.reduce_sum(tf.exp(x - x_max), reduction_indices=axis))def forward(self, observations, transitions, length, is_viterbi=True, return_best_seq=True):length = tf.reshape(length, [self.batch_size])transitions = tf.reshape(tf.concat(0, [transitions] * self.batch_size), [self.batch_size, 6, 6])observations = tf.reshape(observations, [self.batch_size, self.num_steps + 2, 6, 1])observations = tf.transpose(observations, [1, 0, 2, 3])previous = observations[0, :, :, :]max_scores = []max_scores_pre = []alphas = [previous]for t in range(1, self.num_steps + 2):previous = tf.reshape(previous, [self.batch_size, 6, 1])current = tf.reshape(observations[t, :, :, :], [self.batch_size, 1, 6])alpha_t = previous + current + transitionsif is_viterbi:max_scores.append(tf.reduce_max(alpha_t, reduction_indices=1))max_scores_pre.append(tf.argmax(alpha_t, dimension=1))alpha_t = tf.reshape(self.logsumexp(alpha_t, axis=1), [self.batch_size, 6, 1])alphas.append(alpha_t)previous = alpha_t           alphas = tf.reshape(tf.concat(0, alphas), [self.num_steps + 2, self.batch_size, 6, 1])alphas = tf.transpose(alphas, [1, 0, 2, 3])alphas = tf.reshape(alphas, [self.batch_size * (self.num_steps + 2), 6, 1])last_alphas = tf.gather(alphas, tf.range(0, self.batch_size) * (self.num_steps + 2) + length)last_alphas = tf.reshape(last_alphas, [self.batch_size, 6, 1])max_scores = tf.reshape(tf.concat(0, max_scores), (self.num_steps + 1, self.batch_size, 6))max_scores_pre = tf.reshape(tf.concat(0, max_scores_pre), (self.num_steps + 1, self.batch_size, 6))max_scores = tf.transpose(max_scores, [1, 0, 2])max_scores_pre = tf.transpose(max_scores_pre, [1, 0, 2])return tf.reduce_sum(self.logsumexp(last_alphas, axis=1)), max_scores, max_scores_pre        def train(self, sess, save_file, X_train, y_train, X_val, y_val):saver = tf.train.Saver()char2id, id2char = helper.loadMap("char2id")label2id, id2label = helper.loadMap("label2id")merged = tf.merge_all_summaries()summary_writer_train = tf.train.SummaryWriter('loss_log/train_loss', sess.graph)  summary_writer_val = tf.train.SummaryWriter('loss_log/val_loss', sess.graph)     num_iterations = int(math.ceil(1.0 * len(X_train) / self.batch_size))cnt = 0for epoch in range(self.num_epochs):# shuffle train in each epochsh_index = np.arange(len(X_train))np.random.shuffle(sh_index)X_train = X_train[sh_index]y_train = y_train[sh_index]print "current epoch: %d" % (epoch)for iteration in range(num_iterations):# trainX_train_batch, y_train_batch = helper.nextBatch(X_train, y_train, start_index=iteration * self.batch_size, batch_size=self.batch_size)y_train_weight_batch = 1 + np.array((y_train_batch == label2id['B']) | (y_train_batch == label2id['E']), float)transition_batch = helper.getTransition(y_train_batch)_, loss_train, max_scores, max_scores_pre, length, train_summary =\sess.run([self.optimizer, self.loss, self.max_scores, self.max_scores_pre, self.length,self.train_summary], feed_dict={self.targets_transition:transition_batch, self.inputs:X_train_batch, self.targets:y_train_batch, self.targets_weight:y_train_weight_batch})predicts_train = self.viterbi(max_scores, max_scores_pre, length, predict_size=self.batch_size)if iteration % 10 == 0:cnt += 1precision_train, recall_train, f1_train = self.evaluate(X_train_batch, y_train_batch, predicts_train, id2char, id2label)summary_writer_train.add_summary(train_summary, cnt)print "iteration: %5d, train loss: %5d, train precision: %.5f, train recall: %.5f, train f1: %.5f" % (iteration, loss_train, precision_train, recall_train, f1_train)  # validationif iteration % 100 == 0:X_val_batch, y_val_batch = helper.nextRandomBatch(X_val, y_val, batch_size=self.batch_size)y_val_weight_batch = 1 + np.array((y_val_batch == label2id['B']) | (y_val_batch == label2id['E']), float)transition_batch = helper.getTransition(y_val_batch)loss_val, max_scores, max_scores_pre, length, val_summary =\sess.run([self.loss, self.max_scores, self.max_scores_pre, self.length,self.val_summary], feed_dict={self.targets_transition:transition_batch, self.inputs:X_val_batch, self.targets:y_val_batch, self.targets_weight:y_val_weight_batch})predicts_val = self.viterbi(max_scores, max_scores_pre, length, predict_size=self.batch_size)precision_val, recall_val, f1_val = self.evaluate(X_val_batch, y_val_batch, predicts_val, id2char, id2label)summary_writer_val.add_summary(val_summary, cnt)print "iteration: %5d, valid loss: %5d, valid precision: %.5f, valid recall: %.5f, valid f1: %.5f" % (iteration, loss_val, precision_val, recall_val, f1_val)if f1_val > self.max_f1:self.max_f1 = f1_valsave_path = saver.save(sess, save_file)print "saved the best model with f1: %.5f" % (self.max_f1)def test(self, sess, X_test, X_test_str, output_path):char2id, id2char = helper.loadMap("char2id")label2id, id2label = helper.loadMap("label2id")num_iterations = int(math.ceil(1.0 * len(X_test) / self.batch_size))print "number of iteration: " + str(num_iterations)with open(output_path, "wb") as outfile:for i in range(num_iterations):print "iteration: " + str(i + 1)results = []X_test_batch = X_test[i * self.batch_size : (i + 1) * self.batch_size]X_test_str_batch = X_test_str[i * self.batch_size : (i + 1) * self.batch_size]if i == num_iterations - 1 and len(X_test_batch) < self.batch_size:X_test_batch = list(X_test_batch)X_test_str_batch = list(X_test_str_batch)last_size = len(X_test_batch)X_test_batch += [[0 for j in range(self.num_steps)] for i in range(self.batch_size - last_size)]X_test_str_batch += [['x' for j in range(self.num_steps)] for i in range(self.batch_size - last_size)]X_test_batch = np.array(X_test_batch)X_test_str_batch = np.array(X_test_str_batch)results = self.predictBatch(sess, X_test_batch, X_test_str_batch, id2label)results = results[:last_size]else:X_test_batch = np.array(X_test_batch)results = self.predictBatch(sess, X_test_batch, X_test_str_batch, id2label)for i in range(len(results)):doc = ''.join(X_test_str_batch[i])outfile.write(doc + "<@>" +" ".join(results[i]).encode("utf-8") + "\n")def viterbi(self, max_scores, max_scores_pre, length, predict_size=128):best_paths = []for m in range(predict_size):path = []last_max_node = np.argmax(max_scores[m][length[m]])# last_max_node = 0for t in range(1, length[m] + 1)[::-1]:last_max_node = max_scores_pre[m][t][last_max_node]path.append(last_max_node)path = path[::-1]best_paths.append(path)return best_pathsdef predictBatch(self, sess, X, X_str, id2label):results = []length, max_scores, max_scores_pre = sess.run([self.length, self.max_scores, self.max_scores_pre], feed_dict={self.inputs:X})predicts = self.viterbi(max_scores, max_scores_pre, length, self.batch_size)for i in range(len(predicts)):x = ''.join(X_str[i]).decode("utf-8")y_pred = ''.join([id2label[val] for val in predicts[i] if val != 5 and val != 0])entitys = helper.extractEntity(x, y_pred)results.append(entitys)return resultsdef evaluate(self, X, y_true, y_pred, id2char, id2label):precision = -1.0recall = -1.0f1 = -1.0hit_num = 0pred_num = 0true_num = 0for i in range(len(y_true)):x = ''.join([str(id2char[val].encode("utf-8")) for val in X[i]])y = ''.join([str(id2label[val].encode("utf-8")) for val in y_true[i]])y_hat = ''.join([id2label[val] for val in y_pred[i]  if val != 5])true_labels = helper.extractEntity(x, y)pred_labels = helper.extractEntity(x, y_hat)hit_num += len(set(true_labels) & set(pred_labels))pred_num += len(set(pred_labels))true_num += len(set(true_labels))if pred_num != 0:precision = 1.0 * hit_num / pred_numif true_num != 0:recall = 1.0 * hit_num / true_numif precision > 0 and recall > 0:f1 = 2.0 * (precision * recall) / (precision + recall)return precision, recall, f1  


util.py

#encoding:utf-8
import re
import os
import csv
import time
import pickle
import numpy as np
import pandas as pddef getEmbedding(infile_path="embedding"):char2id, id_char = loadMap("char2id")row_index = 0with open(infile_path, "rb") as infile:for row in infile:row = row.strip()row_index += 1if row_index == 1:num_chars = int(row.split()[0])emb_dim = int(row.split()[1])emb_matrix = np.zeros((len(char2id.keys()), emb_dim))continueitems = row.split()char = items[0]emb_vec = [float(val) for val in items[1:]]if char in char2id:emb_matrix[char2id[char]] = emb_vecreturn emb_matrixdef nextBatch(X, y, start_index, batch_size=128):last_index = start_index + batch_sizeX_batch = list(X[start_index:min(last_index, len(X))])y_batch = list(y[start_index:min(last_index, len(X))])if last_index > len(X):left_size = last_index - (len(X))for i in range(left_size):index = np.random.randint(len(X))X_batch.append(X[index])y_batch.append(y[index])X_batch = np.array(X_batch)y_batch = np.array(y_batch)return X_batch, y_batchdef nextRandomBatch(X, y, batch_size=128):X_batch = []y_batch = []for i in range(batch_size):index = np.random.randint(len(X))X_batch.append(X[index])y_batch.append(y[index])X_batch = np.array(X_batch)y_batch = np.array(y_batch)return X_batch, y_batch# use "0" to padding the sentence
def padding(sample, seq_max_len):for i in range(len(sample)):if len(sample[i]) < seq_max_len:sample[i] += [0 for _ in range(seq_max_len - len(sample[i]))]return sampledef prepare(chars, labels, seq_max_len, is_padding=True):X = []y = []tmp_x = []tmp_y = []for record in zip(chars, labels):c = record[0]l = record[1]# empty lineif c == -1:if len(tmp_x) <= seq_max_len:X.append(tmp_x)y.append(tmp_y)tmp_x = []tmp_y = []else:tmp_x.append(c)tmp_y.append(l)	if is_padding:X = np.array(padding(X, seq_max_len))else:X = np.array(X)y = np.array(padding(y, seq_max_len))return X, ydef extractEntity(sentence, labels):entitys = []re_entity = re.compile(r'BM*E')m = re_entity.search(labels)while m:entity_labels = m.group()start_index = labels.find(entity_labels)entity = sentence[start_index:start_index + len(entity_labels)]labels = list(labels)# replace the "BM*E" with "OO*O"labels[start_index: start_index + len(entity_labels)] = ['O' for i in range(len(entity_labels))] entitys.append(entity)labels = ''.join(labels)m = re_entity.search(labels)return entitysdef loadMap(token2id_filepath):if not os.path.isfile(token2id_filepath):print "file not exist, building map"buildMap()token2id = {}id2token = {}with open(token2id_filepath) as infile:for row in infile:row = row.rstrip().decode("utf-8")token = row.split('\t')[0]token_id = int(row.split('\t')[1])token2id[token] = token_idid2token[token_id] = tokenreturn token2id, id2tokendef saveMap(id2char, id2label):with open("char2id", "wb") as outfile:for idx in id2char:outfile.write(id2char[idx] + "\t" + str(idx)  + "\r\n")with open("label2id", "wb") as outfile:for idx in id2label:outfile.write(id2label[idx] + "\t" + str(idx) + "\r\n")print "saved map between token and id"def buildMap(train_path="train.in"):df_train = pd.read_csv(train_path, delimiter='\t', quoting=csv.QUOTE_NONE, skip_blank_lines=False, header=None, names=["char", "label"])chars = list(set(df_train["char"][df_train["char"].notnull()]))labels = list(set(df_train["label"][df_train["label"].notnull()]))char2id = dict(zip(chars, range(1, len(chars) + 1)))label2id = dict(zip(labels, range(1, len(labels) + 1)))id2char = dict(zip(range(1, len(chars) + 1), chars))id2label =  dict(zip(range(1, len(labels) + 1), labels))id2char[0] = "<PAD>"id2label[0] = "<PAD>"char2id["<PAD>"] = 0label2id["<PAD>"] = 0id2char[len(chars) + 1] = "<NEW>"char2id["<NEW>"] = len(chars) + 1saveMap(id2char, id2label)return char2id, id2char, label2id, id2labeldef getTrain(train_path, val_path, train_val_ratio=0.99, use_custom_val=False, seq_max_len=200):char2id, id2char, label2id, id2label = buildMap(train_path)df_train = pd.read_csv(train_path, delimiter='\t', quoting=csv.QUOTE_NONE, skip_blank_lines=False, header=None, names=["char", "label"])# map the char and label into iddf_train["char_id"] = df_train.char.map(lambda x : -1 if str(x) == str(np.nan) else char2id[x])df_train["label_id"] = df_train.label.map(lambda x : -1 if str(x) == str(np.nan) else label2id[x])# convert the data in maxtrixX, y = prepare(df_train["char_id"], df_train["label_id"], seq_max_len)# shuffle the samplesnum_samples = len(X)indexs = np.arange(num_samples)np.random.shuffle(indexs)X = X[indexs]y = y[indexs]if val_path != None:X_train = Xy_train = y	X_val, y_val = getTest(val_path, is_validation=True, seq_max_len=seq_max_len)else:# split the data into train and validation setX_train = X[:int(num_samples * train_val_ratio)]y_train = y[:int(num_samples * train_val_ratio)]X_val = X[int(num_samples * train_val_ratio):]y_val = y[int(num_samples * train_val_ratio):]print "train size: %d, validation size: %d" %(len(X_train), len(y_val))return X_train, y_train, X_val, y_valdef getTest(test_path="test.in", is_validation=False, seq_max_len=200):char2id, id2char = loadMap("char2id")label2id, id2label = loadMap("label2id")df_test = pd.read_csv(test_path, delimiter='\t', quoting=csv.QUOTE_NONE, skip_blank_lines=False, header=None, names=["char", "label"])def mapFunc(x, char2id):if str(x) == str(np.nan):return -1elif x.decode("utf-8") not in char2id:return char2id["<NEW>"]else:return char2id[x.decode("utf-8")]df_test["char_id"] = df_test.char.map(lambda x:mapFunc(x, char2id))df_test["label_id"] = df_test.label.map(lambda x : -1 if str(x) == str(np.nan) else label2id[x])if is_validation:X_test, y_test = prepare(df_test["char_id"], df_test["label_id"], seq_max_len)return X_test, y_testelse:df_test["char"] = df_test.char.map(lambda x : -1 if str(x) == str(np.nan) else x)X_test, _ = prepare(df_test["char_id"], df_test["char_id"], seq_max_len)X_test_str, _ = prepare(df_test["char"], df_test["char_id"], seq_max_len, is_padding=False)print "test size: %d" %(len(X_test))return X_test, X_test_strdef getTransition(y_train_batch):transition_batch = []for m in range(len(y_train_batch)):y = [5] + list(y_train_batch[m]) + [0]for t in range(len(y)):if t + 1 == len(y):continuei = y[t]j = y[t + 1]if i == 0:breaktransition_batch.append(i * 6 + j)transition_batch = np.array(transition_batch)return transition_batch

train.py

import time
import helper
import argparse
import numpy as np
import pandas as pd
import tensorflow as tf
from BILSTM_CRF import BILSTM_CRF# python train.py train.in model -v validation.in -c char_emb -e 10 -g 2parser = argparse.ArgumentParser()
parser.add_argument("train_path", help="the path of the train file")
parser.add_argument("save_path", help="the path of the saved model")
parser.add_argument("-v","--val_path", help="the path of the validation file", default=None)
parser.add_argument("-e","--epoch", help="the number of epoch", default=100, type=int)
parser.add_argument("-c","--char_emb", help="the char embedding file", default=None)
parser.add_argument("-g","--gpu", help="the id of gpu, the default is 0", default=0, type=int)args = parser.parse_args()train_path = args.train_path
save_path = args.save_path
val_path = args.val_path
num_epochs = args.epoch
emb_path = args.char_emb
gpu_config = "/cpu:0"
#gpu_config = "/gpu:"+str(args.gpu)
num_steps = 200 # it must consist with the teststart_time = time.time()
print "preparing train and validation data"
X_train, y_train, X_val, y_val = helper.getTrain(train_path=train_path, val_path=val_path, seq_max_len=num_steps)
char2id, id2char = helper.loadMap("char2id")
label2id, id2label = helper.loadMap("label2id")
num_chars = len(id2char.keys())
num_classes = len(id2label.keys())
if emb_path != None:embedding_matrix = helper.getEmbedding(emb_path)
else:embedding_matrix = Noneprint "building model"
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:with tf.device(gpu_config):initializer = tf.random_uniform_initializer(-0.1, 0.1)with tf.variable_scope("model", reuse=None, initializer=initializer):model = BILSTM_CRF(num_chars=num_chars, num_classes=num_classes, num_steps=num_steps, num_epochs=num_epochs, embedding_matrix=embedding_matrix, is_training=True)print "training model"tf.initialize_all_variables().run()model.train(sess, save_path, X_train, y_train, X_val, y_val)print "final best f1 is: %f" % (model.max_f1)end_time = time.time()print "time used %f(hour)" % ((end_time - start_time) / 3600)

test.py

import time
import helper
import argparse
import numpy as np
import pandas as pd
import tensorflow as tf
from BILSTM_CRF import BILSTM_CRF# python test.py model test.in test.out -c char_emb -g 2parser = argparse.ArgumentParser()
parser.add_argument("model_path", help="the path of model file")
parser.add_argument("test_path", help="the path of test file")
parser.add_argument("output_path", help="the path of output file")
parser.add_argument("-c","--char_emb", help="the char embedding file", default=None)
parser.add_argument("-g","--gpu", help="the id of gpu, the default is 0", default=0, type=int)
args = parser.parse_args()model_path = args.model_path
test_path = args.test_path
output_path = args.output_path
gpu_config = "/cpu:0"
emb_path = args.char_emb
num_steps = 200 # it must consist with the trainstart_time = time.time()print "preparing test data"
X_test, X_test_str = helper.getTest(test_path=test_path, seq_max_len=num_steps)
char2id, id2char = helper.loadMap("char2id")
label2id, id2label = helper.loadMap("label2id")
num_chars = len(id2char.keys())
num_classes = len(id2label.keys())
if emb_path != None:embedding_matrix = helper.getEmbedding(emb_path)
else:embedding_matrix = Noneprint "building model"
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:with tf.device(gpu_config):initializer = tf.random_uniform_initializer(-0.1, 0.1)with tf.variable_scope("model", reuse=None, initializer=initializer):model = BILSTM_CRF(num_chars=num_chars, num_classes=num_classes, num_steps=num_steps, embedding_matrix=embedding_matrix, is_training=False)print "loading model parameter"saver = tf.train.Saver()saver.restore(sess, model_path)print "testing"model.test(sess, X_test, X_test_str, output_path)end_time = time.time()print "time used %f(hour)" % ((end_time - start_time) / 3600)


相关预处理的数据请参考github: scofiled's github/bilstm+crf













  相关解决方案