平面内的区域个数=平面内的点数+平面内的边数+2,因为这个是在圆上,所以圆外的那1个要减去,所以最后+1而不是+2。点数=C(n,4),即每4个点连线就有一个平面内的点产生,边数=C(n,2),即每两个点连线就产生一条边。
组合数的几种求法
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <map>
#include <set>
#define eps 0.0000000001
#define mem(a,b) memset(a,b,sizeof(a))
#define MAX 1e9
#define inf 99999999999999999
#define mod 1000000007
using namespace std;
typedef long long ll;ll p=mod;
ll n,m;ll quick_mod(ll a, ll b)
{ll ans = 1;a %= p;while(b){if(b & 1){ans = ans * a % p;b--;}b >>= 1;a = a * a % p;}return ans;
}ll C(ll n, ll m)
{if(m > n)return 0;ll ans = 1;for(int i=1; i<=m; i++){ll a = (n + i - m) % p;ll b = i % p;ans = ans * (a * quick_mod(b, p-2) % p) % p;}return ans;
}ll Lucas(ll n, ll m)
{if(m == 0)return 1;return C(n % p, m % p) * Lucas(n / p, m / p) % p;
}int main()
{int T;scanf("%d",&T);int cas=1;while(T--){ll n;scanf("%lld",&n);ll ans=(Lucas(n,2)+Lucas(n,4)+1)%mod;printf("Case #%d: %lld\n",cas++,ans);}return 0;
}