当前位置: 代码迷 >> 综合 >> FFmpeg 开发(05):FFmpeg + OpenGLES 实现视频解码播放和视频滤镜
  详细解决方案

FFmpeg 开发(05):FFmpeg + OpenGLES 实现视频解码播放和视频滤镜

热度:44   发布时间:2024-02-13 01:28:06.0

该原创文章首发于微信公众号:字节流动

FFmpeg 开发系列连载:

FFmpeg 开发(01):FFmpeg 编译和集成
FFmpeg 开发(02):FFmpeg + ANativeWindow 实现视频解码播放
FFmpeg 开发(03):FFmpeg + OpenSLES 实现音频解码播放
FFmpeg 开发(04):FFmpeg + OpenGLES 实现音频可视化播放

前面 Android FFmpeg 开发系列文章中,我们已经利用 FFmpeg 的解码功能和 ANativeWindow 的渲染功能,实现了的视频的解码播放。但是,当你想为播放器做一些视频滤镜时,如加水印、旋转缩放等效果,使用 OpenGL ES 实现起来就极为方便。

视频解码播放和视频滤镜

OpenGLES 渲染解码帧

经过上面几节的介绍,我们对音视频的解码过程已经比较熟悉了。本文要用 OpenGL 实现视频的渲染,这里再回顾下视频的解码流程:

视频的解码流程

从流程图中可以看出,解码一帧图像后,首先将对图像进行格式转换,转换成 RGBA 格式,使用 OpenGL 或 ANativeWindow 可以直接进行渲染。

当然,使用 OpenGL 进行渲染时,为了提升性能,可以将格式转换放到 GPU 上来做(即 shader 实现 YUV 到 RGB 的转换),也可以使用 OES 纹理直接接收 YUV 图像数据,这里就不进行展开讲了。

了解视频解码到渲染的流程之后,我们就可以构建 OpenGL 渲染环境。从之前介绍 EGL 的文章中,我们知道在使用 OpenGL API 之前,必须要先利用 EGL 创建好 OpenGL 的渲染上下文环境。至于 EGL 怎么使用,可以参考文章OpenGLES 与 EGL 的关系。

由于本文是面向初学者快速上手 FFmpeg 开发,我们直接利用 Android GLSurfaceView 类创建 OpenGL 渲染环境,GLSurfaceView 类已经封装了 EGL 创建渲染上下文的操作,并启动了一个独立的渲染线程,完全符合我们渲染视频解码帧的需求。

实际上,GLSurfaceView 类在生产开发中可以满足绝大多数的屏幕渲染场景,一般要实现多线程渲染的时候才需要我们单独操作 EGL 的接口。

那么,你肯定会有疑问:GLSurfaceView 是 Java 的类,难道要将 Native 层解码后的视频图像传到 Java 层再进行渲染吗?大可不必,我们只需要将 Java 层的调用栈通过 JNI 延伸到 Native 层即可。

GLSurfaceView 类 Renderer 接口对应渲染的三个关键函数,我们通过 JNI 延伸到 Native 层:

    @Overridepublic void onSurfaceCreated(GL10 gl10, EGLConfig eglConfig) {FFMediaPlayer.native_OnSurfaceCreated();}@Overridepublic void onSurfaceChanged(GL10 gl10, int w, int h) {FFMediaPlayer.native_OnSurfaceChanged(w, h);}@Overridepublic void onDrawFrame(GL10 gl10) {FFMediaPlayer.native_OnDrawFrame();}//for video openGL renderpublic static native void native_OnSurfaceCreated();public static native void native_OnSurfaceChanged(int width, int height);public static native void native_OnDrawFrame();

然后,我们在 Native 层创建一个 OpenGLRender 类来用来管理 OpenGL 的渲染。

//接口
class VideoRender {
public:virtual ~VideoRender(){}virtual void Init(int videoWidth, int videoHeight, int *dstSize) = 0;virtual void RenderVideoFrame(NativeImage *pImage) = 0;virtual void UnInit() = 0;
};//OpenGLRender 类定义
class OpenGLRender: public VideoRender{
public:virtual void Init(int videoWidth, int videoHeight, int *dstSize);virtual void RenderVideoFrame(NativeImage *pImage);virtual void UnInit();//对应 Java 层 GLSurfaceView.Renderer 的三个接口void OnSurfaceCreated();void OnSurfaceChanged(int w, int h);void OnDrawFrame();//静态实例管理static OpenGLRender *GetInstance();static void ReleaseInstance();//设置变换矩阵,控制图像的旋转缩放void UpdateMVPMatrix(int angleX, int angleY, float scaleX, float scaleY);private:OpenGLRender();virtual ~OpenGLRender();static std::mutex m_Mutex;static OpenGLRender* s_Instance;GLuint m_ProgramObj = GL_NONE;GLuint m_TextureId;GLuint m_VaoId;GLuint m_VboIds[3];NativeImage m_RenderImage;glm::mat4 m_MVPMatrix;//变换矩阵
};

OpenGLRender 类的完整实现。

#include "OpenGLRender.h"
#include <GLUtils.h>
#include <gtc/matrix_transform.hpp>OpenGLRender* OpenGLRender::s_Instance = nullptr;
std::mutex OpenGLRender::m_Mutex;static char vShaderStr[] ="#version 300 es\n""layout(location = 0) in vec4 a_position;\n""layout(location = 1) in vec2 a_texCoord;\n""uniform mat4 u_MVPMatrix;\n""out vec2 v_texCoord;\n""void main()\n""{\n"" gl_Position = u_MVPMatrix * a_position;\n"" v_texCoord = a_texCoord;\n""}";static char fShaderStr[] ="#version 300 es\n""precision highp float;\n""in vec2 v_texCoord;\n""layout(location = 0) out vec4 outColor;\n""uniform sampler2D s_TextureMap;//采样器\n""void main()\n""{\n"" outColor = texture(s_TextureMap, v_texCoord);\n""}";GLfloat verticesCoords[] = {-1.0f,  1.0f, 0.0f,  // Position 0-1.0f, -1.0f, 0.0f,  // Position 11.0f,  -1.0f, 0.0f,  // Position 21.0f,   1.0f, 0.0f,  // Position 3
};GLfloat textureCoords[] = {0.0f,  0.0f,        // TexCoord 00.0f,  1.0f,        // TexCoord 11.0f,  1.0f,        // TexCoord 21.0f,  0.0f         // TexCoord 3
};GLushort indices[] = { 0, 1, 2, 0, 2, 3 };OpenGLRender::OpenGLRender() {}OpenGLRender::~OpenGLRender() {// 释放缓存图像NativeImageUtil::FreeNativeImage(&m_RenderImage);}//初始化视频图像的宽和高
void OpenGLRender::Init(int videoWidth, int videoHeight, int *dstSize) {LOGCATE("OpenGLRender::InitRender video[w, h]=[%d, %d]", videoWidth, videoHeight);std::unique_lock<std::mutex> lock(m_Mutex);m_RenderImage.format = IMAGE_FORMAT_RGBA;m_RenderImage.width = videoWidth;m_RenderImage.height = videoHeight;dstSize[0] = videoWidth;dstSize[1] = videoHeight;m_FrameIndex = 0;}// 接收解码后的视频帧
void OpenGLRender::RenderVideoFrame(NativeImage *pImage) {LOGCATE("OpenGLRender::RenderVideoFrame pImage=%p", pImage);if(pImage == nullptr || pImage->ppPlane[0] == nullptr)return;//加互斥锁,解码线程和渲染线程是 2 个不同的线程,避免数据访问冲突std::unique_lock<std::mutex> lock(m_Mutex);if(m_RenderImage.ppPlane[0] == nullptr){NativeImageUtil::AllocNativeImage(&m_RenderImage);}NativeImageUtil::CopyNativeImage(pImage, &m_RenderImage);
}void OpenGLRender::UnInit() {}// 设置变换矩阵,控制图像的旋转缩放
void OpenGLRender::UpdateMVPMatrix(int angleX, int angleY, float scaleX, float scaleY)
{angleX = angleX % 360;angleY = angleY % 360;//转化为弧度角float radiansX = static_cast<float>(MATH_PI / 180.0f * angleX);float radiansY = static_cast<float>(MATH_PI / 180.0f * angleY);// Projection matrixglm::mat4 Projection = glm::ortho(-1.0f, 1.0f, -1.0f, 1.0f, 0.1f, 100.0f);//glm::mat4 Projection = glm::frustum(-ratio, ratio, -1.0f, 1.0f, 4.0f, 100.0f);//glm::mat4 Projection = glm::perspective(45.0f,ratio, 0.1f,100.f);// View matrixglm::mat4 View = glm::lookAt(glm::vec3(0, 0, 4), // Camera is at (0,0,1), in World Spaceglm::vec3(0, 0, 0), // and looks at the originglm::vec3(0, 1, 0)  // Head is up (set to 0,-1,0 to look upside-down));// Model matrixglm::mat4 Model = glm::mat4(1.0f);Model = glm::scale(Model, glm::vec3(scaleX, scaleY, 1.0f));Model = glm::rotate(Model, radiansX, glm::vec3(1.0f, 0.0f, 0.0f));Model = glm::rotate(Model, radiansY, glm::vec3(0.0f, 1.0f, 0.0f));Model = glm::translate(Model, glm::vec3(0.0f, 0.0f, 0.0f));m_MVPMatrix = Projection * View * Model;}void OpenGLRender::OnSurfaceCreated() {LOGCATE("OpenGLRender::OnSurfaceCreated");m_ProgramObj = GLUtils::CreateProgram(vShaderStr, fShaderStr);if (!m_ProgramObj){LOGCATE("OpenGLRender::OnSurfaceCreated create program fail");return;}glGenTextures(1, &m_TextureId);glBindTexture(GL_TEXTURE_2D, m_TextureId);glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);glBindTexture(GL_TEXTURE_2D, GL_NONE);// Generate VBO Ids and load the VBOs with dataglGenBuffers(3, m_VboIds);glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[0]);glBufferData(GL_ARRAY_BUFFER, sizeof(verticesCoords), verticesCoords, GL_STATIC_DRAW);glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[1]);glBufferData(GL_ARRAY_BUFFER, sizeof(textureCoords), textureCoords, GL_STATIC_DRAW);glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_VboIds[2]);glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);// Generate VAO IdglGenVertexArrays(1, &m_VaoId);glBindVertexArray(m_VaoId);glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[0]);glEnableVertexAttribArray(0);glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), (const void *)0);glBindBuffer(GL_ARRAY_BUFFER, GL_NONE);glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[1]);glEnableVertexAttribArray(1);glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(GLfloat), (const void *)0);glBindBuffer(GL_ARRAY_BUFFER, GL_NONE);glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_VboIds[2]);glBindVertexArray(GL_NONE);UpdateMVPMatrix(0, 0, 1.0f, 1.0f);
}void OpenGLRender::OnSurfaceChanged(int w, int h) {LOGCATE("OpenGLRender::OnSurfaceChanged [w, h]=[%d, %d]", w, h);m_ScreenSize.x = w;m_ScreenSize.y = h;glViewport(0, 0, w, h);glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
}void OpenGLRender::OnDrawFrame() {glClear(GL_COLOR_BUFFER_BIT);if(m_ProgramObj == GL_NONE || m_TextureId == GL_NONE || m_RenderImage.ppPlane[0] == nullptr) return;LOGCATE("OpenGLRender::OnDrawFrame [w, h]=[%d, %d]", m_RenderImage.width, m_RenderImage.height);m_FrameIndex++;//upload RGBA image dataglActiveTexture(GL_TEXTURE0);glBindTexture(GL_TEXTURE_2D, m_TextureId);//加互斥锁,解码线程和渲染线程是 2 个不同的线程,避免数据访问冲突std::unique_lock<std::mutex> lock(m_Mutex);glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_RenderImage.width, m_RenderImage.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, m_RenderImage.ppPlane[0]);lock.unlock();glBindTexture(GL_TEXTURE_2D, GL_NONE);// Use the program objectglUseProgram (m_ProgramObj);glBindVertexArray(m_VaoId);GLUtils::setMat4(m_ProgramObj, "u_MVPMatrix", m_MVPMatrix);// Bind the RGBA mapglActiveTexture(GL_TEXTURE0);glBindTexture(GL_TEXTURE_2D, m_TextureId);GLUtils::setFloat(m_ProgramObj, "s_TextureMap", 0);glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);}// 单例模式,全局只有一个 OpenGLRender
OpenGLRender *OpenGLRender::GetInstance() {if(s_Instance == nullptr){std::lock_guard<std::mutex> lock(m_Mutex);if(s_Instance == nullptr){s_Instance = new OpenGLRender();}}return s_Instance;
}// 释放静态实例
void OpenGLRender::ReleaseInstance() {if(s_Instance != nullptr){std::lock_guard<std::mutex> lock(m_Mutex);if(s_Instance != nullptr){delete s_Instance;s_Instance = nullptr;}}
}

OpenGLRender 在 JNI 层的调用。

JNIEXPORT void JNICALL
Java_com_byteflow_learnffmpeg_media_FFMediaPlayer_native_1OnSurfaceCreated(JNIEnv *env,jclass clazz) {OpenGLRender::GetInstance()->OnSurfaceCreated();
}JNIEXPORT void JNICALL
Java_com_byteflow_learnffmpeg_media_FFMediaPlayer_native_1OnSurfaceChanged(JNIEnv *env,jclass clazz, jint width,jint height) {OpenGLRender::GetInstance()->OnSurfaceChanged(width, height);
}JNIEXPORT void JNICALL
Java_com_byteflow_learnffmpeg_media_FFMediaPlayer_native_1OnDrawFrame(JNIEnv *env, jclass clazz) {OpenGLRender::GetInstance()->OnDrawFrame();
}

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k2U2SUP5-1597931759211)(https://upload-images.jianshu.io/upload_images/3239933-4b80db0466dc8aa8.gif?imageMogr2/auto-orient/strip)]

添加简单的视频滤镜

这里又回到了 OpenGL ES 开发领域,对这一块感兴趣的同学可以参考这篇Android OpenGL ES 从入门到精通系统性学习教程。

利用 OpenGL 实现好视频的渲染之后,可以很方便地利用 shader 添加你想要的视频滤镜,这里我们直接可以参考相机滤镜的实现。

黑白滤镜

我们将输出视频帧的一半渲染成经典黑白风格的图像,实现的 shader 如下:

//黑白滤镜
#version 300 es
precision highp float;
in vec2 v_texCoord;
layout(location = 0) out vec4 outColor;
uniform sampler2D s_TextureMap;//采样器
void main()
{outColor = texture(s_TextureMap, v_texCoord);if(v_texCoord.x > 0.5) //将输出视频帧的一半渲染成经典黑白风格的图像outColor = vec4(vec3(outColor.r*0.299 + outColor.g*0.587 + outColor.b*0.114), outColor.a);
}

黑白滤镜的呈现效果:
黑白滤镜

动态网格

动态网格滤镜是将视频图像分成规则的网格,动态修改网格的边框宽度,实现的 shader 如下:

//dynimic mesh 动态网格
#version 300 es
precision highp float;
in vec2 v_texCoord;
layout(location = 0) out vec4 outColor;
uniform sampler2D s_TextureMap;//采样器
uniform float u_Offset;
uniform vec2 u_TexSize;
void main()
{vec2 imgTexCoord = v_texCoord * u_TexSize;float sideLength = u_TexSize.y / 6.0;float maxOffset = 0.15 * sideLength;float x = mod(imgTexCoord.x, floor(sideLength));float y = mod(imgTexCoord.y, floor(sideLength));float offset = u_Offset * maxOffset;if(offset <= x&& x <= sideLength - offset&& offset <= y&& y <= sideLength - offset){outColor = texture(s_TextureMap, v_texCoord);}else{outColor = vec4(1.0, 1.0, 1.0, 1.0);}
}

动态网格滤镜的渲染过程:


glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_TextureId);std::unique_lock<std::mutex> lock(m_Mutex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_RenderImage.width, m_RenderImage.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, m_RenderImage.ppPlane[0]);
lock.unlock();glBindTexture(GL_TEXTURE_2D, GL_NONE);//指定着色器程序
glUseProgram (m_ProgramObj);//绑定 VAO
glBindVertexArray(m_VaoId);//传入变换矩阵
GLUtils::setMat4(m_ProgramObj, "u_MVPMatrix", m_MVPMatrix);//绑定纹理
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_TextureId);
GLUtils::setFloat(m_ProgramObj, "s_TextureMap", 0);//设置偏移量
float offset = (sin(m_FrameIndex * MATH_PI / 25) + 1.0f) / 2.0f;
GLUtils::setFloat(m_ProgramObj, "u_Offset", offset);//设置图像尺寸
GLUtils::setVec2(m_ProgramObj, "u_TexSize", vec2(m_RenderImage.width, m_RenderImage.height));glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);

动态网格滤镜的呈现效果:
动态网格滤镜

缩放和旋转

我们在 GLSurfaceView 监听用户的滑动和缩放手势,控制 OpenGLRender 的变换矩阵,从而实现视频图像的旋转和缩放。

视频图像的旋转和缩放

联系与交流

技术交流/获取源码可以添加我的微信:Byte-Flow

联系我

  相关解决方案