当前位置: 代码迷 >> 综合 >> few-shot learning(少样本学习) & one-shot learning(一样本学习)
  详细解决方案

few-shot learning(少样本学习) & one-shot learning(一样本学习)

热度:5   发布时间:2024-02-13 01:40:21.0

       人类非常擅长通过极少量的样本识别一个新物体,比如小孩子只需要书中的一些图片就可以认识什么是“斑马”,什么是“犀牛”。在人类的快速学习能力的启发下,研究人员希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习,这就是 Few-shot Learning 要解决的问题

      Few-shot Learning 是 Meta Learning 在监督学习领域的应用

 

     这里的少样本学习的研究领域与迁移学习有一大部分交集部分,即在源域有足够多样本,而在目标域样本不足。

 

 

One-shot learning 一样本学习

少样本学习,机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习,对应的有one-shot learning, 一样本学习,也算样本少到为一的情况下的一种few-shot learning,

  相关解决方案