问题描述
我需要从4波段图像中提取3个波段。 我正在使用一个名为NumpyArrayToRaster()的函数,它只接受最多3个波段图像。 我如何让它适用于4频段图像?
这是我现在的代码 -
import arcpy
arcpy.CheckOutExtension("Spatial")
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from skimage import io
from skimage.segmentation import quickshift
arcpy.env.overwriteOutput = True
# The input 4-band NAIP image
img = r'C:\Users\Alekhya\Desktop\Krishna\NRSC\processed image\newclip4\clip4.tif'
# Convert image to numpy array
imgarr = io.imread(img)
print imgarr
print imgarr.shape
print imgarr.dtype
# Run the quick shift segmentation
segments = quickshift(imgarr, kernel_size=3, convert2lab=False, max_dist=6, ratio=0.5)
print("Quickshift number of segments: %d" % len(np.unique(segments)))
# View the segments via Python
plt.imshow(segments)
print segments
print segments.shape
print type(segments)
print segments.dtype
# Get raster metrics for coordinate info
imgRaster = arcpy.sa.Raster(img)
# Lower left coordinate of block (in map units)
mx = imgRaster.extent.XMin
my = imgRaster.extent.YMin
sr = imgRaster.spatialReference
'''
# Note the use of arcpy to convert numpy array to raster
seg = arcpy.NumPyArrayToRaster(segments, arcpy.Point(mx,my), imgRaster.meanCellWidth, imgRaster.meanCellHeight)
outRaster = r'C:\Users\Alekhya\Desktop\Krishna\NRSC\processed image\newclip4\segments_clip4.tif'
seg_temp = seg.save(outRaster)
arcpy.DefineProjection_management(outRaster, sr)
'''
# Calculate NDVI from bands 4 and 3
b4 = arcpy.sa.Raster(r'C:\Users\Alekhya\Desktop\Krishna\NRSC\processed image\newclip4\clip4.tif\Band_4')
b3 = arcpy.sa.Raster(r'C:\Users\Alekhya\Desktop\Krishna\NRSC\processed image\newclip4\clip4.tif\Band_3')
ndvi = arcpy.sa.Float(b4-b3) / arcpy.sa.Float(b4+b3)
print ndvi
# Extract NDVI values based on image object boundaries
zones = arcpy.sa.ZonalStatistics(segments, "VALUE", ndvi, "MEAN")
zones.save(r'C:\Users\Alekhya\Desktop\Krishna\NRSC\processed image\newclip4\zones_clip4.tif')
# Classify the segments based on NDVI values
binary = arcpy.sa.Con(zones < 20, 1, 0)
binary.save(r'C:\Users\Alekhya\Desktop\Krishna\NRSC\processed image\newclip4\classified_clip4.tif')
1楼
在阅读代码时,我意识到您需要计算NDVI值。
也许你稍微修改一下你的方法,而不是使用函数NumpyArrayToRaster(
)你可以使用更简单的方法吗?
在这里,我提供了我的代码,其中: - 从多个日期读取单个堆栈的Sentinel数据(多波段复合) - 使用rasterName/Band_X
识别NDVI计算所需的波段 - 从波段计算NDVI - 将每个日期的NDVI保存到输出文件夹,保持它的名字和日期
在Landsat中,NDVI的那些频段是Band_4和Band_3
我的代码:
# calculate NDVI from sentinel data
# list raster and calculate NDVI per each raster individually
# import modules
import arcpy, string
# import environmental settings
from arcpy import env
from arcpy.sa import *
# check out spatial extension
arcpy.CheckOutExtension("spatial")
arcpy.env.overwriteOutput = True
# add workspace
env.workspace = "C:/Users/input"
# List rasters
rasters = arcpy.ListRasters("*", "TIF")
# Output directory
outWd = "C:/Users/output/ndvi"
# calculate ndvi for every sentinel raster
for raster in rasters:
# define ndvi outputs
outNDVI = outWd + "/"+ raster.replace(".tif", "_ndvi.tif")
print "outNDVI is " + outNDVI
# specify inputs for ndvi and final output
# NDVI takes NIR and Red, which are in Sentinel Band 4 and Band 8
Red = raster + '\Band_4'
NIR = raster + '\Band_8'
# Create Numerator and Denominator rasters as variables, and
# NDVI as output
Num = arcpy.sa.Float(Raster(NIR) - Raster(Red))
Denom = arcpy.sa.Float(Raster(NIR) + Raster(Red))
NDVI = arcpy.sa.Divide(Num, Denom)
print "NDVI calculating"
# save results output
NDVI.save(outNDVI)
print "NDVI saved"