当前位置: 代码迷 >> 综合 >> keras, tensorflow 模型参数总量计算
  详细解决方案

keras, tensorflow 模型参数总量计算

热度:86   发布时间:2023-12-27 04:54:02.0

一、keras计算参数量:model.summary(),放到网络的后面。

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Activation
from keras.layers import Convolution2D as Conv2D
from keras.layers import MaxPooling2D
from keras import backend as Kmodel = Sequential()
model.add(Conv2D(32, kernel_size=(3, 2),input_shape=(8,8,1)))
convout1 = Activation('relu')
model.add(convout1)model.add(Conv2D(64, (2, 3), activation='relu'))
model.add(Conv2D(64, (2, 2), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))model.compile(loss=keras.losses.categorical_crossentropy,optimizer=keras.optimizers.Adadelta()
  相关解决方案