# K均值聚类 K-means
import numpy as np
import matplotlib.pyplot as pltfrom sklearn.cluster import KMeans
from sklearn.datasets import make_blobsplt.figure(figsize=(12, 12))n_samples = 1500
random_state = 170
X, y = make_blobs(n_samples=n_samples, random_state=random_state)# 簇数有误 Incorrect number of clusters
y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X)plt.subplot(221)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title("Incorrect Number of Blobs")#
transformation = [[0.60834549, -0.63667341], [-0.4088718, 0.85253229]]
X_aniso = np.dot(X, transformation)
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso)plt.subplot(222)
plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred)
plt.title("Anisotropicly Distributed Blobs")# 不同的方差 Different variance
X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state)
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied)plt.subplot(223)
plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred)
plt.title("Unequal Variance")# 不均匀大小的斑点 Unevenly sized blobs
X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10]))
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered)plt.subplot(224)
plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred)
plt.title("Unevenly Sized Blobs")plt.show()
详细解决方案
『sklearn学习』K-means 聚类
热度:51 发布时间:2024-01-04 11:34:21.0
相关解决方案
- scipy 的K-means
- sklearn-1.1.14.被动攻击算法
- sklearn-1.1.13.感知器
- sklearn-1.1.12随机梯度下降
- sklearn-1.1.7.最小角度回归
- sklearn in python
- 关于Warning: setState(...): Can only update a mounted or mounting component. This usually means you ca
- [深度学习] (sklearn)感知机的异或操作实现
- [深度学习] (sklearn)感知机的操作实现
- [深度学习] (sklearn)多层感知机对葡萄酒的分类
- sklearn——TfidfVectorizer笔记
- sklearn-笔记
- 『sklearn学习』sklearn(书)学习笔记
- 『sklearn学习』K-means 聚类
- 详解| Sklearn—GridSearch 调参函数
- 数据挖掘十大经典算法(2) The k-means algorithm .
- 数据分类K—means 算法的python代码实现
- python调试报错:no module named‘sklearn.svm_class‘
- No module named ‘sklearn.learning_curve‘等问题