当前位置: 代码迷 >> 综合 >> Prime RingProblem素环问题 14
  详细解决方案

Prime RingProblem素环问题 14

热度:36   发布时间:2023-12-12 05:34:12.0

Prime RingProblem素环问题

Problem Description

A ring is composeof n circles as shown in diagram. Put natural number 1, 2, ..., n into eachcircle separately, and the sum of numbers in two adjacent circles should be aprime.
Note: the number of first circle should always be 1.

环是组合成n个圆圈所示的图。把自然数1,2,...,n为进分别各圈,和数字中的两个相邻圈之和应该是一个素数。

注意:第一圈的数量始终应为1。

Input

n (0 < n <20).

Output

The output formatis shown as sample below. Each row represents a series of circle numbers in thering beginning from 1 clockwisely and anticlockwisely. The order of numbersmust satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.

输出格式如下图所示的样品。每一行代表一个系列的圆形数字的环从1开始顺时针和按逆时针方向。号的顺序,必须满足上述要求。在字典顺序打印解决方案。

请你写一个程序,完成上述过程。

打印每个案例后,一个空行。

Sample Input

6

8

Sample Output

Case 1:

1 4 3 2 5 6

1 6 5 2 3 4

Case 2:

1 2 3 8 5 6 7 4

1 2 5 8 3 4 7 6

1 4 7 6 5 8 3 2

1 6 7 4 3 8 5 2


 代码如下:

#include <stdio.h>
#include <stdlib.h>int num[21],mark[21],n;
int prime_num[12] = {2,3,5,7,11,13,17,19,23,29,31,37};//判断是否是质数,是返回1,不是返回0
int is_prime(int a)
{int i;for(i = 0; i < 12;i++)if(a==prime_num[i])return 1;return 0;
}
void print_num()
{int i;for(i = 1; i < n;i++)printf("%d ",num[i]);printf("%d",num[n]);
}int dfs(int pre,int post,int flag)
{//如果不符合,直接返回int i;if(!is_prime(pre+post))//前+后若不是素数,则返回 0 return 0;num[flag] = post;if(flag==n&&is_prime(post+1)){print_num();printf("\n");return 1;}//使用过了这个数字就标记为0mark[post] = 0;for( i = 2;i<=n;i++)if(mark[i]!=0 && dfs(post,i,flag+1))break;//标记位恢复原状mark[post] = 1;return 0;
}int main()
{int count,i;count = 1;while(scanf("%d",&n)!=EOF){for(i = 1; i <= n; i++)mark[i] = i;num[1] = 1;printf("Case %d:\n",count++);if(n==1)printf("1\n");for(i = 2;i<=n;i++)dfs(1,i,2);printf("\n");}return 0;
}