二维线段树,就是在一维线段树的基础上,把每个区间节点换成了另一颗线段树而已
也就是树中套树
每个节点访问的时候,都要对第二颗树进行一次查询,每次查询O(logY)
对于第一棵树查询要查询第二棵树logX次,故总的复杂度是O(logX * logY)
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<functional>
#include<algorithm>using namespace std;
typedef long long LL;const int MX = 1000 + 5;
const int INF = 0x3f3f3f3f;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define root 1,n,1int T, n, m;
char SUM[MX << 2][MX << 2];void build() {memset(SUM, 0, sizeof(SUM));
}void update_y(int xrt, int L, int R, int l, int r, int rt) {if(L <= l && r <= R) {SUM[xrt][rt] = (SUM[xrt][rt] + 1) % 2;return;}int m = (l + r) >> 1;if(L <= m) update_y(xrt, L, R, lson);if(R > m) update_y(xrt, L, R, rson);
}void update_x(int xL, int xR, int yL, int yR, int l, int r, int rt) {if(xL <= l && r <= xR) {update_y(rt, yL, yR, root);return;}int m = (l + r) >> 1;if(xL <= m) update_x(xL, xR, yL, yR, lson);if(xR > m) update_x(xL, xR, yL, yR, rson);
}int query_y(int xrt, int y, int l, int r, int rt) {if(l == r) {return SUM[xrt][rt];}int m = (l + r) >> 1, ret = SUM[xrt][rt];if(y <= m) ret += query_y(xrt, y, lson);else ret += query_y(xrt, y, rson);return ret % 2;
}int query_x(int x, int y, int l, int r, int rt) {if(l == r) {return query_y(rt, y, root);}int m = (l + r) >> 1, ret = query_y(rt, y, root);if(x <= m) ret += query_x(x, y, lson);else ret += query_x(x, y, rson);return ret % 2;
}int main() {scanf("%d", &T);bool first = true;while(T--) {build();scanf("%d%d", &n, &m);if(first) first = false;else puts("");for(int i = 1; i <= m; i++) {char op[10];int a, b, c, d;scanf("%s", op);if(op[0] == 'C') {scanf("%d%d%d%d", &a, &c, &b, &d);update_x(a, b, c, d, root);} else {scanf("%d%d", &a, &b);printf("%d\n", query_x(a, b, root));}}}return 0;
}