当前位置: 代码迷 >> 综合 >> [Usaco2008 Mar]土地购买 斜率优化的DP
  详细解决方案

[Usaco2008 Mar]土地购买 斜率优化的DP

热度:23   发布时间:2024-01-13 17:34:46.0

农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土 地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以 它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要 付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小 的经费.

这题还算是比较经典的。

首先我们按x,y都递减排序。其中x是宽,y是长

然后发现如果一个矩形的长宽都不大于另一个矩形的长宽。那么这个矩形的花费就是0,因为买那个矩形顺便就买了这个小的。

所以去除这些不花钱的矩形。

剩下的矩形,x是递减的,y是递增的

然后可以写出转移方程

f[i] = min(f[j] + x[j + 1] * y[i]) (j < i)

然后为了方便,把x数组坐标提前一下

f[i] = min(f[j] + x[j] * y[i]) (j < i)

然后发现是n ^2的。不优化会超时

这就要用到经典的斜率优化了

考虑两个决策f[j],f[k]并假设j<k。
如果对于f[i],从f[j]转移来比从f[k]转移来更优,那么有:
f[j]+x[j]*y[i]<f[k]+x[k]*y[i]
移项得:
y[i]<(f[k]-f