当前位置: 代码迷 >> 综合 >> PAT1003 Emergency (25)(dijkstra多条路径权重处理)
  详细解决方案

PAT1003 Emergency (25)(dijkstra多条路径权重处理)

热度:54   发布时间:2024-01-16 13:25:37.0

题意:

n个城市m条路,每个城市有救援小组,所有的边的边权已知。给定起点和终点,求从起点到终点的最短路径条数以及最短路径上的救援小组数目之和。如果有多条就输出点权(城市救援小组数目)最大的那个

思路:

这种题用dijkstra+回溯可以保证一定做的出来。

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=550;
int weight[maxn];
int dis[maxn];
bool vis[maxn];
int edge[maxn][maxn];
vector<int> pre[maxn];
vector<int> temppath;
int n,m,c1,c2;
int resnum,maxweight=-1;void dijkstra(int s){fill(vis,vis+maxn,true);fill(dis,dis+maxn,inf);dis[s]=0;for(int i=0;i<n;i++){int minn=inf,u;for(int j=0;j<n;j++){if(vis[j]&&dis[j]<minn){minn=dis[j];u=j;}}vis[u]=false;for(int v=0;v<n;v++){if(vis[v]){if(dis[v]>dis[u]+edge[u][v]){dis[v]=dis[u]+edge[u][v];pre[v].clear();pre[v].push_back(u);}else if(dis[v]==dis[u]+edge[u][v]){pre[v].push_back(u);}}}}
}void dfs(int now){if(now==c1){resnum++;int sum=0;for(int i=0;i<temppath.size();i++){sum+=weight[temppath[i]];}if(sum>maxweight)maxweight=sum;return;}for(int i=0;i<pre[now].size();i++){int v=pre[now][i];temppath.push_back(v);dfs(v);temppath.pop_back();}
}int main(){scanf("%d%d%d%d",&n,&m,&c1,&c2);for(int i=0;i<n;i++){scanf("%d",&weight[i]);}int u,v,temp;fill(edge[0],edge[0]+maxn*maxn,inf);for(int i=0;i<m;i++){scanf("%d%d%d",&u,&v,&temp);edge[u][v]=edge[v][u]=temp;}dijkstra(c1);dfs(c2);cout<<resnum<<" "<<maxweight+weight[c2]<<endl;return 0;
}

网上的代码思路是在dijkstra的同时用dp,也就是处理松弛的情况时,维护way和w数组,分别表示路径数与救援队数,当同样是最短路径时,way[v]=sum(way[u]),这里有简单的动态规划的思想。

#include<string>
#include<cstdlib>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<algorithm>
#include<functional>
#include<iostream>
using namespace std;const int maxn = 510;
const int inf = 9999999;
int n, m;
int edge[maxn][maxn], weight[maxn], dis[maxn];
bool vis[maxn];
int way[maxn], w[maxn];//way是起点到i节点的路径数
int s, e;			   //w是起点到i节点救援队总和void dijkstra(int s) {fill(dis, dis + maxn, inf);fill(vis, vis + maxn, true);dis[s] = 0;w[s] = weight[s];way[s] = 1;for (int i = 0; i < n; i++) {int u = -1, min = inf;for (int j = 0; j < n; j++) {if (vis[j] && min > dis[j]) {u = j;min = dis[j];}}if (u == -1) break;vis[u] = false;for (int v = 0; v < n; v++) {if (vis[v] && edge[u][v] != inf) {if (dis[u] + edge[u][v] < dis[v]) {way[v] = way[u];					//此时v的路径数与u相同dis[v] = dis[u] + edge[u][v];w[v] = w[u] + weight[v];}else if (dis[u] + edge[u][v] == dis[v]) {way[v] += way[u];				//此时v的路径数加上u的路径数if (w[u] + weight[v] > w[v])w[v] = w[u] + weight[v];}}}}
}int main() {scanf("%d%d%d%d", &n, &m, &s, &e);for (int i = 0; i < n; i++)scanf("%d", &weight[i]);fill(edge[0], edge[0] + maxn*maxn, inf);int a, b, c;while (m--) {scanf("%d%d%d", &a, &b, &c);edge[a][b] = edge[b][a] = c;}dijkstra(s);printf("%d %d", way[e], w[e]);return 0;
}